

Towards Standard Methodology in the Safety Analysis of Research Reactors

International Conference on Research Reactors: Safe Management and Effective Utilization 14-18 November 2011, Rabat, Morocco

Dr. A. Hainoun, Head, Reactor Safety Division and Energy System Analysis AECS, Nuclear Engineering Department E-mail: ahainoun@aec.org.sy

Content

Background;

- Safety Analysis Scheme of RR;
- Qualification of Safety Analysis Codes;
- Examples: Application on Selected RR;
- Role of IAEA in Adopting a Safety Analysis Codes;
- **Conclusion.**

- There is a wide spectrum of RR types:
 - Low to medium flux reactors: $\phi < 10^{14} cm^{-2} \cdot s$
 - High flux reactors: $10^{14} cm^{-2} \cdot s \le \phi < 5 \cdot 10^{14} cm^{-2} \cdot s$
 - Highest flux reactors: $\phi \ge 5 \cdot 10^{14} cm^{-2} \cdot s$

Various RR and FE Types

Neutron flux vs. reactor power for various research reactor types

Specific Features of RR

Involutes Fuel Plates

Scope of RR Safety Analysis

- Analysis of event sequences and evaluation of PIEs consequences,
- and comparison of the achieved analysis results with design limits and radiological acceptance criteria.

General Aspects of RR

- Despite the difference between RR and power reactors, the safety objective is the same;
- Variety of RR has limited the effort to
 establish detailed standard approach and the
 development of comprehensive Safety
 Analysis Codes for RR.

Safety Aspects of RR

Safety Limits:

Sub-cooled boiling (ONB, OSV);
Thermal hydraulic instability (OFI),
Parallel channel instability,
DNB (saturated or subcooled).

Safety Aspects of RR (Some PIE)

RIA, LOFA, LOCA; Loss of elect. power Internal and external events, Human errors, etc..

Approach for Comprehensive Safety Analysis

Specification of core, FE Safety limits Core and loops geometry and margins: specification **DNBR, OFI Neutronic Analysis: Design**& Safety analysis of DBA: **Criticality and burn-up** Safety Analysis **RIA, LOFA, LOCA, ATWS** (MCNP, CITATION, ...) (TH Codes +3D-Kinetic) **TH Analysis: Distribution of** SS, Transients **Τ, ν, p,** ε (RELAP, ATHLET, MERSAT,

CATHARE, PARET, CATENA)

Key dynamic parameters: $\Phi, \phi, \beta, \alpha, \Lambda$

Verification and Validation Procedure

Validation Matrix

(single &integral effect test)

			Physical Phenomena							
			ONB,	OFI d	& DNE	&	Fuel	Flow	Natural	Reactivity
			OSV	PCI	Tran	sition	Melting	Reversal	Circulation	Feedback
					Boil	ng				& 3D
		Avial Void								Effects
	Experiments	Distribution	А		P					
		Static								
		Instability	А	Р						
		Experiments								
		Parallel								
		Channel	Р	A		P	Р			
		Instability								
		RIA					Р			А
		LOFA		Р		4	Р	Р	Р	Р
		LOCA				4	А			Р
		Loss of Heat					D		Λ	D
		Sink					I		Λ	1
		Two Phase	А			А			Р	
		Heat Transfer							1	

Covering range of the experiment regarding the physical phenomenon:

A: Appropriate for code validation, P: Partially appropriate for code validation

Selected Examples:

MNSR, IAEA-10 MW, FRJ-2, FRM-2 ETRR2, RSG-GAS, IEA-R1, MNR, SPERT-IV

MSNR Models (MERSAT, ATHLET, RELAP)

MCNP 3-D Model of MNSR

TH Experiments and Validation Results

LOFA and RIA Analysis of IAEA-RR (10 MW)

LOFA Analysis of IAEA-RR

RIA Analysis of IAEA-RR

LOFA Simulation of IEA-R1

(ATHLT Application)

ETRR2 Reactor

MERSAT Nodalization Model

On going IAEA's-CRP1496 on: "Innovative Methods in Research Reactor Analysis"

Scope of the Project:

Assessment and qualification of selected computational codes for the application in neutronic, thermal hydraulic and safety analysis of research reactors

Conclusion

The performance of standard safety analysis for RR require the establishment of qualified deterministic safety analysis code (TH-system code& 3-D Neutronic) IAEA could start an initiative to set up such SAC !

Proposal for possible working program

Development Phase:

Establishing a technical working group to initiate the development program (adopting modular structure),

•Utilizing the experience in restructuring the advanced codes like RELAP, ATHLET, CATHARE,...with emphasis on 3DN

Conclusion

Testing and Verification:

IAEA's WG and selected teams in MS,

Validation:

- Establishing a robust validation matrix using RR data base,
- Distribution to MS for initial test to receive feedbacks and recommendations,
- Establishing and freezing the first version: accumulating user recommendations for periodical updating,

Conclusion

This effort could support the standardization of SA of RR resulting in:

- Improve the performance and utilization of RR especially in developing countries,
- Enhance the safety culture in MS by exchange of experiences in RR safety analysis,
- Open possibility to simulate combined event sequences (lesson learned from F-D accident).

